Loading ...

PS film

Based on

52 Articles
2018 Most recent source

Composition

1

polystyrene

PS
Type Polymer
Formula
Role raw materials

Properties

General physical and chemical properties

Property Value Nanomaterial Variant Source

Details in source

Thickness: 90 nm

Medium: none

Support: soda-lime-silica glass

Details in source

Droplet height: ~ 80 nm

Medium: none

Support: Si/SiO2

amplitude-phase-distance curve

Details in source

Droplet height: ~ 69 nm

Medium: none

Support: Si/SiO2

amplitude-phase-distance curve

Details in source

Droplet height: ~ 91 nm

Medium: none

Support: Si/SiO2

Details in source

Thickness: 78 nm

Medium/Support: none

Details in source

Thickness: ~< 6.6 nm

Medium/Support: none

Details in source

Thickness: ~< 6.6 nm

Medium/Support: none

Details in source

Size: not specified

Medium/Support: none

Details in source

Thickness: 100 nm

Medium/Support: none

Details in source

Thickness: ~ 50 nm

Medium/Support: none

Details in source

Thickness: 12 - 38 nm

Medium/Support: none

Details in source

Thickness: 10 - 100 nm

Medium/Support: none

Details in source

Thickness: 10 - 100 nm

Medium/Support: none

Details in source

Thickness: 7 nm

Medium: none

Support: silicon

electron density plot

Details in source

Thickness: 6.5 - 7.5 nm

Medium: none

Support: on silicon 2 nm thick native silicon oxide layer

Details in source

Thickness: 100 nm

Medium/Support: none

Details in source

Thickness: ~ 13 nm

Medium: none

Support: silicon dioxide

film viscosity normalized to bulk viscosity

Details in source

Thickness: 8 nm

Medium: none

Support: silicon dioxide

film viscosity normalized to bulk viscosity

Details in source

Thickness: ~ 70 nm

Medium: none

Support: silicon dioxide

film viscosity normalized to bulk viscosity

Details in source

Thickness: ~ 5 nm

Medium: none

Support: silicon dioxide

film viscosity normalized to bulk viscosity

Details in source

Thickness: 20 nm

Medium: none

Support: silicon dioxide

film viscosity normalized to bulk viscosity

Details in source

Thickness: ~ 3 nm

Medium: none

Support: silicon dioxide

Details in source

Droplet height: ~ 80 nm

Medium: none

Support: Si/SiO2

force relaxation time

Details in source

Droplet height: ~ 91 nm

Medium: none

Support: Si/SiO2

Details in source

Droplet height: ~ 80 nm

Medium: none

Support: Si/SiO2

force-distance plot

Details in source

Droplet height: ~ 69 nm

Medium: none

Support: Si/SiO2

force-distance plot

Details in source

Droplet height: ~ 91 nm

Medium: none

Support: Si/SiO2

Details in source

Thickness: 91 nm

Medium: none

Support: Si/SiO2

Details in source

Thickness: 91 nm

Medium: none

Support: Si/SiO2

Details in source

Thickness: ~ 300 nm

Medium/Support: none

Details in source

Thickness: ~ 7 nm

Medium: none

Support: silicon oxide-covered-silicon

free energy evolution

Details in source

Thickness: 6.5 - 7.5 nm

Medium: none

Support: on silicon 2 nm thick native silicon oxide layer

No matching record found

Applications

Area Application Nanomaterial Variant Source

organic thin-film coating technologies

Thickness: 10 nm

Medium: none

Support: N,N-dimethylaminopropyl trimethoxysilane-modified-silica substrate

coatings

organic thin-film coating technologies

Thickness: 40 nm

Medium/Support: none

coatings

organic thin-film coating technologies

Thickness: 10 nm

Medium/Support: none

coatings

organic thin-film coating technologies

Thickness: 10 nm

Medium: none

Support: n-octyltrichlorosilane-modified-silica substrate

solid electrolytes for batteries

Thickness: ~ 40 nm

Medium/Support: none

energy storage devices

Thickness: ~ 40 nm

Medium/Support: none

membrane nanofiltration

Thickness: ~ 40 nm

Medium/Support: none

membrane nanofiltration

Thickness: ~ 40 nm

Medium/Support: none

lithography template

Pore diameter: 27.7 - 31.9 nm

Pore spacing: 45 nm

Medium/Support: none

nanoprinting/nanolithography

lithography template

Pore diameter: 37 nm

Medium/Support: none

model system to study thickness dependent viscosity of polymer films

Thickness: 8 nm

Medium: none

Support: silicon dioxide

other

model system to study thickness dependent viscosity of polymer films

Thickness: ~ 70 nm

Medium: none

Support: silicon dioxide

other

model system to study thickness dependent viscosity of polymer films

Thickness: ~ 13 nm

Medium: none

Support: silicon dioxide

other

model system to study thickness dependent viscosity of polymer films

Thickness: 13 nm

Medium: none

Support: silicon dioxide

other

model system to study thickness dependent viscosity of polymer films

Thickness: ~ 5 nm

Medium: none

Support: silicon dioxide

other

model system to study thickness dependent viscosity of polymer films

Thickness: 20 nm

Medium: none

Support: silicon dioxide

other

model system to study thickness dependent viscosity of polymer films

Thickness: ~ 3 nm

Medium: none

Support: silicon dioxide

other

template for nanostructured calcite single crystal formation

Size: not specified

Medium/Support: none

waterproof inks

Thickness: 90 nm

Medium: none

Support: soda-lime-silica glass

organic solar cells

Thickness: ~ 40 nm

Medium/Support: none

power generation

organic solar cells donor layer

Thickness: 100 nm

Medium/Support: none

template for gold plasmonic nanostructures fabrication

Size: not specified

Medium/Support: none

raw materials/precursors/templates

template for metal grid preparation

Thickness: 40 nm

Medium: none

Support: silicon

raw materials/precursors/templates

well-defined metal nanodots (ND) array template

Lamellar periodicity: 75 nm

Lamellar width: 46 nm

Thickness: 40 nm

Medium/Support: none

raw materials/precursors/templates

nanowire template

Thickness: ~ 40 nm

Medium/Support: none

raw materials/precursors/templates

precursor for patterned surface formation for cell oriented spreading

Thickness: ~ 300 nm

Medium/Support: none

raw materials/precursors/templates

template sponge-like nanoporous silica film preparation

Thickness: 98 nm

Medium/Support: none

No matching record found

Characterization

Method Nanomaterial Variant Source

Droplet height: ~ 91 nm

Medium: none

Support: Si/SiO2

atomic force microscopy

Droplet height: ~ 80 nm

Medium: none

Support: Si/SiO2

atomic force microscopy

Droplet height: ~ 69 nm

Medium: none

Support: Si/SiO2

atomic force microscopy

Groove width: 50 nm

Thickness: 40 nm

Medium: none

Support: silicon

atomic force microscopy

Thickness: 17.9 - 18.3 nm

Medium/Support: none

atomic force microscopy

Thickness: ~ 100 nm

Medium/Support: none

atomic force microscopy

Size: not specified

Medium/Support: none

atomic force microscopy

Groove width: 780 nm

Thickness: 40 nm

Medium: none

Support: silicon

atomic force microscopy

Groove width: 900 nm

Thickness: 40 nm

Medium: none

Support: silicon

atomic force microscopy

Groove width: 720 nm

Thickness: 40 nm

Medium: none

Support: silicon

atomic force microscopy

Thickness: 4.3 nm

Medium: none

Support: silicon

atomic force microscopy

Thickness: 3.2 nm

Medium: none

Support: on silicon 2 nm thick native silicon oxide layer

atomic force microscopy

Thickness: 6.8 nm

Medium: none

Support: on silicon 2 nm thick native silicon oxide layer

atomic force microscopy

Thickness: 7.1 nm

Medium: none

Support: silicon

atomic force microscopy

Thickness: 16 nm

Medium/Support: none

atomic force microscopy

Thickness: 28 nm

Medium/Support: none

atomic force microscopy

Thickness: 20 nm

Medium/Support: none

atomic force microscopy

Thickness: 12 nm

Medium/Support: none

atomic force microscopy

Thickness: ~ 50 nm

Medium/Support: none

atomic force microscopy

Thickness: 8 nm

Medium/Support: none

atomic force microscopy

Thickness: 10 nm

Medium/Support: none

atomic force microscopy

Thickness: 18 nm

Medium/Support: none

atomic force microscopy

Thickness: 40 nm

Medium/Support: none

atomic force microscopy

Thickness: 14 nm

Medium/Support: none

atomic force microscopy

Thickness: 9 nm

Medium/Support: none

atomic force microscopy

Hole depth: 20 nm

Thickness: 40 nm

Medium: none

Support: indium tin oxide glass

atomic force microscopy

Island diameter: 150 - 400 nm

Thickness: ~ 33 nm

Medium: none

Support: Si/SiO2

atomic force microscopy

Island diameter: 50 - 150 nm

Thickness: ~ 7 nm

Medium: none

Support: Si/SiO2

atomic force microscopy

Thickness: 100 nm

Medium/Support: none

atomic force microscopy

Island diameter: 200 - 800 nm

Thickness: ~ 54 nm

Medium: none

Support: Si/SiO2

atomic force microscopy

Island diameter: 250 - 550 nm

Thickness: ~ 33 nm

Medium: none

Support: Si/SiO2

atomic force microscopy

Thickness: ~ 12 nm

Medium/Support: none

atomic force microscopy

Thickness: ~ 400 nm

Medium/Support: none

Thickness: 98 nm

Medium/Support: none

Lamellar periodicity: 75 nm

Lamellar width: 46 nm

Thickness: 40 nm

Medium/Support: none

grazing incidence X-ray and neutron diffraction

Thickness: ~ 40 nm

Medium/Support: none

Thickness: 18 nm

Medium: none

Support: silicon

Thickness: 40 nm

Medium: none

Support: silicon

optical microscopy

Groove width: 50 nm

Thickness: 40 nm

Medium: none

Support: silicon

optical microscopy

Thickness: 17.9 - 18.3 nm

Medium/Support: none

optical microscopy

Groove width: 780 nm

Thickness: 40 nm

Medium: none

Support: silicon

optical microscopy

Pattern wavelength: ~ 10000 nm

Thickness: 160 nm

Medium: none

Support: poly(isosorbide fatty alkylate)

optical microscopy

Groove width: 900 nm

Thickness: 40 nm

Medium: none

Support: silicon

optical microscopy

Groove width: 720 nm

Thickness: 40 nm

Medium: none

Support: silicon

optical microscopy

Thickness: 10 nm

Medium: none

Support: N,N-dimethylaminopropyl trimethoxysilane-modified-silica substrate

optical microscopy

Thickness: 10 nm

Medium/Support: none

optical microscopy

Thickness: 10 nm

Medium: none

Support: n-octyltrichlorosilane-modified-silica substrate

optical microscopy

Thickness: 40 nm

Medium/Support: none

optical microscopy

Thickness: 100 nm

Medium/Support: none

Roughness: 0.6 nm

Thickness: 100 - 120 nm

Medium: none

Support: nitrogen-doped silicon

Thickness: 100 nm

Medium: none

Support: soda-lime-silica glass

Raman spectroscopy

Thickness: 100 nm

Medium: water

Support: soda-lime-silica glass

Raman spectroscopy

Thickness: 17.9 - 18.3 nm

Medium/Support: none

Raman spectroscopy

Thickness: 70 nm

Medium/Support: none

Pore periodicity: 33 nm

Thickness: ~ 50 nm

Medium/Support: none

scanning electron microscopy

Lamellar spacing: 70 nm

Lamellar width: 70 nm

Pitch: 140 nm

Thickness: ~ 60 nm

Medium/Support: none

scanning electron microscopy

Hole diameter: 40 nm

Thickness: 50 nm

Medium/Support: none

scanning electron microscopy

Lamellar periodicity: 75 nm

Lamellar width: 46 nm

Thickness: 40 nm

Medium/Support: none

scanning electron microscopy

Thickness: ~ 75 nm

Medium: none

Support: fluorine doped tin oxide

scanning electron microscopy

Thickness: ~ 40 nm

Medium/Support: none

scanning electron microscopy

Pore diameter: 27.7 - 31.9 nm

Pore spacing: 45 nm

Medium/Support: none

scanning electron microscopy

Thickness: ~ 50 nm

Medium/Support: none

scanning electron microscopy

Pore size: ~ 43 nm

Medium: none

Support: Si/SiO2

scanning electron microscopy

Island diameter: 250 - 550 nm

Thickness: ~ 33 nm

Medium: none

Support: Si/SiO2

scanning electron microscopy

Size: not specified

Medium/Support: none

Thickness: 100 nm

Medium/Support: none

Thickness: ~ 80 nm

Medium/Support: none

Thickness: 6.5 - 7.5 nm

Medium: none

Support: on silicon 2 nm thick native silicon oxide layer

X-ray reflectometry

Thickness: 7 nm

Medium: none

Support: silicon

X-ray reflectometry

Thickness: 36 nm

Medium/Support: none

No matching record found

Biological effects

Biological system Test details Nanomaterial Variant Source

poor antibacterial activity

Thickness: ~ 40 nm

Medium/Support: none

poor antibacterial activity

Thickness: ~ 40 nm

Medium/Support: none

No matching record found

Preparation

No matching record found

Method 1

Type: Physical formation
Starting materials
  • polystyrene
dissolution
1
  1. toluene
spin casting
2
  • Si/SiO2
annealing
3
  1. ambient condition
Product

PS film

Thickness: 91 nm

Medium: none

Support: Si/SiO2

Method 2

Type: Physical formation
Starting materials
  • polystyrene
dissolution
1
  1. toluene
spin casting
2
  • Si/SiO2
annealing
3
  1. chloroform vapor of 33.3 %
Product

PS film

Droplet height: ~ 80 nm

Medium: none

Support: Si/SiO2

Method 3

Starting materials
  • polystyrene
1
  1. toluene solution
filtration
2
spin coating
3
  1. glass as substrate
Product

PS film

Size: not specified

Medium/Support: none

Method 4

Type: Physical formation
Starting materials
  • polystyrene
dissolution
1
  1. toluene
spin casting
2
  • Si/SiO2
annealing
3
  1. chloroform vapor of 14.3 %
Product

PS film

Droplet height: ~ 91 nm

Medium: none

Support: Si/SiO2

Method 5

Type: Physical formation
Starting materials
  • polystyrene
dissolution
1
  1. toluene
spin casting
2
  • Si/SiO2
annealing
3
  1. ambient condition
Product

PS film

Droplet height: ~ 69 nm

Medium: none

Support: Si/SiO2

References

Journal articles

Martin Dehnert; Robert Magerle (2018)
3D depth profiling of the interaction between an AFM tip and fluid polymer solutions

Nanoscale, vol. 10, issue 12, pp 5695 - 5707

Naresh Kumar; Weitao Su; Martin Veselý; Bert M. Weckhuysen; Andrew J. Pollard; Andrew J. Wain (2018)
Nanoscale chemical imaging of solid-liquid interfaces using tip-enhanced Raman spectroscopy

Nanoscale, vol. 10, issue 4, pp 1815 - 1824

Kumar, Deepak; Paulsen, Joseph D.; Russell, Thomas P.; Menon, Narayanan (2018)
Wrapping with a splash: High-speed encapsulation with ultrathin sheets

Science (Washington, DC, U. S.), vol. 359, issue 6377, pp 775 - 778

Zhao, Zhi; Cao, Yang; Cai, Yangjun; Yang, Jian; He, Ximin; Nordlander, Peter; Cremer, Paul S. (2017)
Oblique Colloidal Lithography for the Fabrication of Nonconcentric Features

ACS Nano, vol. 11, issue 7, pp 6594 - 6604

Kim, Kwang Su; Kim, Jong Uk; Lee, Sori; Lee, Ju Seung; Jo, Young Jin; Park, Byeonghak; Tak, Hyowon; Yoo, Pil J.; Kim, Tae-Il (2017)
High-Precision Temperature-Controllable Metal-Coated Polymeric Molds for Programmable, Hierarchical Patterning

Adv. Funct. Mater., vol. 27, issue 38

Cao, Peigen; Bai, Peter; Omrani, Arash A.; Xiao, Yihan; Meaker, Kacey L.; Tsai, Hsin-Zon; Yan, Aiming; Jung, Han Sae; Khajeh, Ramin; Rodgers, Griffin F.; Kim, Youngkyou; Aikawa, Andrew S.; Kolaczkowski, Mattew A.; Liu, Yi; Zettl, Alex; Xu, Ke; Crommie, Michael F.; Xu, Ting (2017)
Preventing Thin Film Dewetting via Graphene Capping

Adv. Mater., vol. 29, issue 36

Sepideh Khodaparast; François Boulogne; Christophe Poulard; Howard A. Stone (2017)
Water-Based Peeling of Thin Hydrophobic Films

Phys. Rev. Lett., vol. 119, issue 15

Basutkar, Monali N.; Samant, Saumil; Strzalka, Joseph; Yager, Kevin G.; Singh, Gurpreet; Karim, Alamgir (2017)
Through-Thickness Vertically Ordered Lamellar Block Copolymer Thin Films on Unmodified Quartz with Cold Zone Annealing

Nano Lett., vol. 17, issue 12, pp 7814 - 7823

Vendamme, Richard; Eevers, Walter (2017)
Sticky Degradable Bioelastomers

Chem. Mater., vol. 29, issue 12, pp 5353 - 5363

Jeon, Hwan-Jin; Kim, Ju Young; Jung, Woo-Bin; Jeong, Hyeon-Su; Kim, Yun Ho; Shin, Dong Ok; Jeong, Seong-Jun; Shin, Jonghwa; Kim, Sang Ouk; Jung, Hee-Tae (2016)
Complex High-Aspect-Ratio Metal Nanostructures by Secondary Sputtering Combined with Block Copolymer Self-Assembly

Adv. Mater., vol. 28, issue 38, pp 8439 - 8445

Tao Li; Zhongli Wang; Lars Schulte; Sokol Ndoni (2016)
Substrate tolerant direct block copolymer nanolithography

Nanoscale, vol. 8, issue 1, pp 136 - 140

Mukai, Koji; Hara, Mitsuo; Nagano, Shusaku; Seki, Takahiro (2016)
High-Density Liquid-Crystalline Polymer Brushes Formed by Surface Segregation and Self-Assembly

Angew. Chem., Int. Ed., vol. 55, issue 45, pp 14028 - 14032

Ju Young Kim; Hyowook Kim; Bong Hoon Kim; Taeyong Chang; Joonwon Lim; Hyeong Min Jin; Jeong Ho Mun; Young Joo Choi; Kyungjae Chung; Jonghwa Shin; Shanhui Fan; Sang Ouk Kim (2016)
Highly tunable refractive index visible-light metasurface from block copolymer self-assembly

Nature Commun., vol. 7

Choi, Young Joo; Kim, Ju Young; Kim, Ji Eun; Mun, Jeong Ho; Cha, Seung Keun; Kim, Sang Ouk (2016)
Hierarchical Directed Self-Assembly of Diblock Copolymers for Modified Pattern Symmetry

Adv. Funct. Mater., vol. 26, issue 35, pp 6462 - 6470

Blachut, Gregory; Sirard, Stephen M.; Maher, Michael J.; Asano, Yusuke; Someya, Yasunobu; Lane, Austin P.; Durand, William J.; Bates, Christopher M.; Dinhobl, Andrew M.; Gronheid, Roel; Hymes, Diane; Ellison, Christopher J.; Willson, C. Grant (2016)
A Hybrid Chemo-/Grapho-Epitaxial Alignment Strategy for Defect Reduction in Sub-10 nm Directed Self-Assembly of Silicon-Containing Block Copolymers

Chem. Mater., vol. 28, issue 24, pp 8951 - 8961

Xiaoli Zheng; Zhanhua Wei; Haining Chen; Qianpeng Zhang; Hexiang He; Shuang Xiao; Zhiyong Fan; Kam Sing Wong; Shihe Yang (2016)
Designing nanobowl arrays of mesoporous TiO2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells

Nanoscale, vol. 8, issue 12, pp 6393 - 6402

Kilho Yu; Byoungwook Park; Geunjin Kim; Chang-Hyun Kim; Sungjun Park; Jehan Kim; Suhyun Jung; Soyeong Jeong; Sooncheol Kwon; Hongkyu Kang; Junghwan Kim; Myung-Han Yoon; Kwanghee Lee (2016)
Optically transparent semiconducting polymer nanonetwork for flexible and transparent electronics

Proc. Natl. Acad. Sci. USA, vol. 113, issue 50, pp 14261 - 14266

Bal, Jayanta Kumar; Beuvier, Thomas; Unni, Aparna Beena; Chavez Panduro, Elvia Anabela; Vignaud, Guillaume; Delorme, Nicolas; Chebil, Mohamed Souheib; Grohens, Yves; Gibaud, Alain (2015)
Stability of Polymer Ultrathin Films (<7 nm) Made by a Top-Down Approach

ACS Nano, vol. 9, issue 8, pp 8184 - 8193

Wan, Lei; Ruiz, Ricardo; Gao, He; Patel, Kanaiyalal C.; Albrecht, Thomas R.; Yin, Jian; Kim, Jihoon; Cao, Yi; Lin, Guanyang (2015)
The Limits of Lamellae-Forming PS-b-PMMA Block Copolymers for Lithography

ACS Nano, vol. 9, issue 7, pp 7506 - 7514

Hamaguchi, Azusa; Negishi, Tsuyoto; Kimura, Yu; Ikeda, Yoshinori; Takimiya, Kazuo; Bisri, Satria Zulkarnaen; Iwasa, Yoshihiro; Shiro, Takashi (2015)
Single-Crystal-Like Organic Thin-Film Transistors Fabricated from Dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) Precursor-Polystyrene Blends

Adv. Mater., vol. 27, issue 42, pp 6606 - 6611


Patents


Sign up for a free trial