Loading ...

PS film

Based on

49 Articles
1 Patents
2017 Most recent source

Composition

1

polystyrene

PS
Type Polymer
Formula
Role raw materials

Properties

General physical and chemical properties

Property Value Nanomaterial Variant Source

Details in source

Thickness: 90 nm

Medium: none

Support: soda-lime-silica glass

Details in source

Thickness: 78 nm

Medium/Support: none

Details in source

Thickness: ~< 6.6 nm

Medium/Support: none

Details in source

Thickness: ~< 6.6 nm

Medium/Support: none

Details in source

Thickness: 100 nm

Medium/Support: none

Details in source

Thickness: ~ 50 nm

Medium/Support: none

Details in source

Thickness: 12 - 38 nm

Medium/Support: none

Details in source

Thickness: 10 - 100 nm

Medium/Support: none

Details in source

Thickness: 10 - 100 nm

Medium/Support: none

Details in source

Thickness: 7 nm

Medium: none

Support: silicon

electron density plot

Details in source

Thickness: 6.5 - 7.5 nm

Medium: none

Support: on silicon 2 nm thick native silicon oxide layer

Details in source

Thickness: 100 nm

Medium/Support: none

Details in source

Thickness: ~ 13 nm

Medium: none

Support: silicon dioxide

film viscosity normalized to bulk viscosity

Details in source

Thickness: 8 nm

Medium: none

Support: silicon dioxide

film viscosity normalized to bulk viscosity

Details in source

Thickness: ~ 70 nm

Medium: none

Support: silicon dioxide

film viscosity normalized to bulk viscosity

Details in source

Thickness: ~ 5 nm

Medium: none

Support: silicon dioxide

film viscosity normalized to bulk viscosity

Details in source

Thickness: 20 nm

Medium: none

Support: silicon dioxide

film viscosity normalized to bulk viscosity

Details in source

Thickness: ~ 3 nm

Medium: none

Support: silicon dioxide

Details in source

Thickness: ~ 300 nm

Medium/Support: none

Details in source

Thickness: ~ 7 nm

Medium: none

Support: silicon oxide-covered-silicon

free energy evolution

Details in source

Thickness: 6.5 - 7.5 nm

Medium: none

Support: on silicon 2 nm thick native silicon oxide layer

Details in source

Thickness: 87 nm

Medium: none

Support: Si/SiO2

glass transition temperature

Details in source

Thickness: 20 nm

Medium/Support: none

glass transition temperature

Details in source

Thickness: 10 - 100 nm

Medium/Support: none

Details in source

Thickness: 98 nm

Medium/Support: none

Details in source

Roughness: 0.6 nm

Thickness: 100 - 120 nm

Medium: none

Support: nitrogen-doped silicon

Details in source

Thickness: ~< 6.6 nm

Medium/Support: none

Details in source

Thickness: ~ 40 nm

Medium/Support: none

Details in source

Thickness: 90 nm

Medium: none

Support: soda-lime-silica glass

No matching record found

Applications

Area Application Nanomaterial Variant Source

organic thin-film coating technologies

Thickness: 10 nm

Medium: none

Support: N,N-dimethylaminopropyl trimethoxysilane-modified-silica substrate

coatings

organic thin-film coating technologies

Thickness: 40 nm

Medium/Support: none

coatings

organic thin-film coating technologies

Thickness: 10 nm

Medium/Support: none

coatings

organic thin-film coating technologies

Thickness: 10 nm

Medium: none

Support: n-octyltrichlorosilane-modified-silica substrate

solid electrolytes for batteries

Thickness: ~ 40 nm

Medium/Support: none

energy storage devices

Thickness: ~ 40 nm

Medium/Support: none

membrane nanofiltration

Thickness: ~ 40 nm

Medium/Support: none

membrane nanofiltration

Thickness: ~ 40 nm

Medium/Support: none

lithography template

Pore diameter: 27.7 - 31.9 nm

Pore spacing: 45 nm

Medium/Support: none

nanoprinting/nanolithography

lithography template

Pore diameter: 37 nm

Medium/Support: none

model system to study thickness dependent viscosity of polymer films

Thickness: 8 nm

Medium: none

Support: silicon dioxide

other

model system to study thickness dependent viscosity of polymer films

Thickness: ~ 70 nm

Medium: none

Support: silicon dioxide

other

model system to study thickness dependent viscosity of polymer films

Thickness: ~ 13 nm

Medium: none

Support: silicon dioxide

other

model system to study thickness dependent viscosity of polymer films

Thickness: 13 nm

Medium: none

Support: silicon dioxide

other

model system to study thickness dependent viscosity of polymer films

Thickness: ~ 5 nm

Medium: none

Support: silicon dioxide

other

model system to study thickness dependent viscosity of polymer films

Thickness: 20 nm

Medium: none

Support: silicon dioxide

other

model system to study thickness dependent viscosity of polymer films

Thickness: ~ 3 nm

Medium: none

Support: silicon dioxide

other

template for nanostructured calcite single crystal formation

Size: not specified

Medium/Support: none

waterproof inks

Thickness: 90 nm

Medium: none

Support: soda-lime-silica glass

organic solar cells

Thickness: ~ 40 nm

Medium/Support: none

power generation

organic solar cells donor layer

Thickness: 100 nm

Medium/Support: none

template for gold plasmonic nanostructures fabrication

Size: not specified

Medium/Support: none

raw materials/precursors/templates

template for metal grid preparation

Thickness: 40 nm

Medium: none

Support: silicon

raw materials/precursors/templates

well-defined metal nanodots (ND) array template

Lamellar periodicity: 75 nm

Lamellar width: 46 nm

Thickness: 40 nm

Medium/Support: none

raw materials/precursors/templates

nanowire template

Thickness: ~ 40 nm

Medium/Support: none

raw materials/precursors/templates

precursor for patterned surface formation for cell oriented spreading

Thickness: ~ 300 nm

Medium/Support: none

raw materials/precursors/templates

template sponge-like nanoporous silica film preparation

Thickness: 98 nm

Medium/Support: none

No matching record found

Characterization

Method Nanomaterial Variant Source

Groove width: 50 nm

Thickness: 40 nm

Medium: none

Support: silicon

atomic force microscopy

Thickness: 17.9 - 18.3 nm

Medium/Support: none

atomic force microscopy

Thickness: ~ 100 nm

Medium/Support: none

atomic force microscopy

Size: not specified

Medium/Support: none

atomic force microscopy

Groove width: 780 nm

Thickness: 40 nm

Medium: none

Support: silicon

atomic force microscopy

Groove width: 900 nm

Thickness: 40 nm

Medium: none

Support: silicon

atomic force microscopy

Groove width: 720 nm

Thickness: 40 nm

Medium: none

Support: silicon

atomic force microscopy

Thickness: 4.3 nm

Medium: none

Support: silicon

atomic force microscopy

Thickness: 3.2 nm

Medium: none

Support: on silicon 2 nm thick native silicon oxide layer

atomic force microscopy

Thickness: 6.8 nm

Medium: none

Support: on silicon 2 nm thick native silicon oxide layer

atomic force microscopy

Thickness: 7.1 nm

Medium: none

Support: silicon

atomic force microscopy

Thickness: 16 nm

Medium/Support: none

atomic force microscopy

Thickness: 28 nm

Medium/Support: none

atomic force microscopy

Thickness: 20 nm

Medium/Support: none

atomic force microscopy

Thickness: 12 nm

Medium/Support: none

atomic force microscopy

Thickness: ~ 50 nm

Medium/Support: none

atomic force microscopy

Thickness: 8 nm

Medium/Support: none

atomic force microscopy

Thickness: 10 nm

Medium/Support: none

atomic force microscopy

Thickness: 18 nm

Medium/Support: none

atomic force microscopy

Thickness: 40 nm

Medium/Support: none

atomic force microscopy

Thickness: 14 nm

Medium/Support: none

atomic force microscopy

Thickness: 9 nm

Medium/Support: none

atomic force microscopy

Hole depth: 20 nm

Thickness: 40 nm

Medium: none

Support: indium tin oxide glass

atomic force microscopy

Island diameter: 150 - 400 nm

Thickness: ~ 33 nm

Medium: none

Support: Si/SiO2

atomic force microscopy

Island diameter: 50 - 150 nm

Thickness: ~ 7 nm

Medium: none

Support: Si/SiO2

atomic force microscopy

Thickness: 100 nm

Medium/Support: none

atomic force microscopy

Island diameter: 200 - 800 nm

Thickness: ~ 54 nm

Medium: none

Support: Si/SiO2

atomic force microscopy

Island diameter: 250 - 550 nm

Thickness: ~ 33 nm

Medium: none

Support: Si/SiO2

atomic force microscopy

Thickness: ~ 12 nm

Medium/Support: none

atomic force microscopy

Thickness: ~ 400 nm

Medium/Support: none

Thickness: 98 nm

Medium/Support: none

Lamellar periodicity: 75 nm

Lamellar width: 46 nm

Thickness: 40 nm

Medium/Support: none

grazing incidence X-ray and neutron diffraction

Thickness: ~ 40 nm

Medium/Support: none

Thickness: 18 nm

Medium: none

Support: silicon

Thickness: 40 nm

Medium: none

Support: silicon

optical microscopy

Groove width: 50 nm

Thickness: 40 nm

Medium: none

Support: silicon

optical microscopy

Thickness: 17.9 - 18.3 nm

Medium/Support: none

optical microscopy

Groove width: 780 nm

Thickness: 40 nm

Medium: none

Support: silicon

optical microscopy

Pattern wavelength: ~ 10000 nm

Thickness: 160 nm

Medium: none

Support: poly(isosorbide fatty alkylate)

optical microscopy

Groove width: 900 nm

Thickness: 40 nm

Medium: none

Support: silicon

optical microscopy

Groove width: 720 nm

Thickness: 40 nm

Medium: none

Support: silicon

optical microscopy

Thickness: 10 nm

Medium: none

Support: N,N-dimethylaminopropyl trimethoxysilane-modified-silica substrate

optical microscopy

Thickness: 10 nm

Medium/Support: none

optical microscopy

Thickness: 10 nm

Medium: none

Support: n-octyltrichlorosilane-modified-silica substrate

optical microscopy

Thickness: 40 nm

Medium/Support: none

optical microscopy

Thickness: 100 nm

Medium/Support: none

Roughness: 0.6 nm

Thickness: 100 - 120 nm

Medium: none

Support: nitrogen-doped silicon

Thickness: 17.9 - 18.3 nm

Medium/Support: none

Raman spectroscopy

Thickness: 70 nm

Medium/Support: none

Pore periodicity: 33 nm

Thickness: ~ 50 nm

Medium/Support: none

scanning electron microscopy

Lamellar spacing: 70 nm

Lamellar width: 70 nm

Pitch: 140 nm

Thickness: ~ 60 nm

Medium/Support: none

scanning electron microscopy

Hole diameter: 40 nm

Thickness: 50 nm

Medium/Support: none

scanning electron microscopy

Lamellar periodicity: 75 nm

Lamellar width: 46 nm

Thickness: 40 nm

Medium/Support: none

scanning electron microscopy

Thickness: ~ 75 nm

Medium: none

Support: fluorine doped tin oxide

scanning electron microscopy

Thickness: ~ 40 nm

Medium/Support: none

scanning electron microscopy

Pore diameter: 27.7 - 31.9 nm

Pore spacing: 45 nm

Medium/Support: none

scanning electron microscopy

Thickness: ~ 50 nm

Medium/Support: none

scanning electron microscopy

Pore size: ~ 43 nm

Medium: none

Support: Si/SiO2

scanning electron microscopy

Island diameter: 250 - 550 nm

Thickness: ~ 33 nm

Medium: none

Support: Si/SiO2

scanning electron microscopy

Size: not specified

Medium/Support: none

Thickness: 100 nm

Medium/Support: none

Thickness: ~ 80 nm

Medium/Support: none

Thickness: 6.5 - 7.5 nm

Medium: none

Support: on silicon 2 nm thick native silicon oxide layer

X-ray reflectometry

Thickness: 7 nm

Medium: none

Support: silicon

X-ray reflectometry

Thickness: 36 nm

Medium/Support: none

No matching record found

Biological effects

Biological system Test details Nanomaterial Variant Source

poor antibacterial activity

Thickness: ~ 40 nm

Medium/Support: none

poor antibacterial activity

Thickness: ~ 40 nm

Medium/Support: none

No matching record found

Preparation

No matching record found

Method 1

Type: Chemical synthesis
etching
1
  1. UV irradiation
  2. vacuum
washing
2
  1. acetic acid
washing
3
  1. water
Product

PS film

Thickness: ~ 100 nm

Medium/Support: none

Method 2

Starting materials
  • polystyrene
spin coating
1
  1. glass substrate
transfer by flotation technique
2
  • poly(isosorbide fatty alkylate)
  1. substrate at 80 °C
drying
3
relaxation
4
Product

PS film

Pattern wavelength: ~ 10000 nm

Thickness: 160 nm

Medium: none

Support: poly(isosorbide fatty alkylate)

Method 3

Type: Physical formation
Starting materials
  • polystyrene
spin coating
1
  1. toluene solution
  2. Au/Cr/glass substrate
Product

PS film

Thickness: 30 nm

Medium/Support: none

Method 4

Type: Physical formation
Starting materials
  • polystyrene
spin coating
1
  1. toluene solution
  2. Au/Cr/glass substrate
Product

PS film

Thickness: 20 nm

Medium/Support: none

Method 5

Type: Physical formation
Starting materials
pressing
1
  1. Au/Cr/glass substrate
  2. PDMS template
  3. ~7.9*103 Pa
annealing
2
  1. 130 °C
  2. 1 h
template removing
3
reactive ion etching (RIE)
4
  1. O2 plasma
  2. 60 W
Product

PS film

Size: not specified

Medium/Support: none

References

Journal articles

Park, Jaehoon; Bae, Jin-Hyuk; Kim, Won-Ho; Kim, Min-Hoi; Keum, Chang-Min; Lee, Sin-Doo; Choi, Jong Sun (2010)
Effects of Interfacial Charge Depletion in Organic Thin-Film Transistors with Polymeric Dielectrics on Electrical Stability

Materials, vol. 3, issue 6, pp 3614 - 3624

Hetherington, Nicola B. J.; Kulak, Alex N.; Kim, Yi-Yeoun; Noel, Elizabeth H.; Snoswell, David; Butler, Michael; Meldrum, Fiona C. (2011)
Porous Single Crystals of Calcite from Colloidal Crystal Templates: ACC Is Not Required for Nanoscale Templating

Adv. Funct. Mater., vol. 21, issue 5, pp 948 - 954

Ding, Yifu; Sun, Jirun; Ro, Hyun Wook; Wang, Zhen; Zhou, Jing; Lin, Nancy J.; Cicerone, Marcus T.; Soles, Christopher L.; Lin-Gibson, Sheng (2011)
Thermodynamic Underpinnings of Cell Alignment on Controlled Topographies

Adv. Mater., vol. 23, issue 3, pp 421 - 425

Chen, Yong; Han, Qiuxia (2011)
Designing N-halamine based antibacterial surface on polymers: Fabrication, characterization, and biocidal functions

Appl. Surf. Sci., vol. 257, issue 14, pp 6034 - 6039

Joo, Wonchul; Kim, Youngsuk; Jang, Sangshin; Kim, Jin Kon (2011)
Antireflection coating with enhanced anti-scratch property from nanoporous block copolymer template

Thin Solid Films, vol. 519, issue 11, pp 3804 - 3808

Zhimin Ao; Sean Li (2011)
Temperature- and thickness-dependent elastic moduli of polymer thin films

Nanoscale Res. Lett., vol. 6, article ID 243

Jeon, Gumhye; Moon, Jong-Sik; Lee, Seunghyun; Lee, Jae Ho; An, Beum-Soo; Hwang, Dae Youn; Kim, Hong Sung; Jung, Young Jin; Kim, Jin Kon; Yang, Seung Yun (2014)
Individually aligned tubular ZnO nanostructures on solid substrates

Mater. Lett., vol. 137, pp 373 - 377

Diederichsen, Kyle M.; Brow, Ryan R.; Stoykovich, Mark P. (2015)
Percolating Transport and the Conductive Scaling Relationship in Lamellar Block Copolymers under Confinement

ACS Nano, vol. 9, issue 3, pp 2465 - 2476

Lin, Chun-Hao; Polisetty, Srinivas; O’Brien, Liam; Baruth, Andrew; Hillmyer, Marc A.; Leighton, Chris; Gladfelter, Wayne L. (2015)
Size-Tuned ZnO Nanocrucible Arrays for Magnetic Nanodot Synthesis via Atomic Layer Deposition-Assisted Block Polymer Lithography

ACS Nano, vol. 9, issue 2, pp 1379 - 1387

Dong-dong Peng; Ran-xing Nancy Li; Chi-hang Lam; Ophelia K. C. Tsui (2013)
Two-layer model description of polymer thin film dynamics

Chin. J. Polym. Sci., vol. 31, issue 1, pp 12 - 20

de Castro, Fernando A.; Nüesch, Frank; Walder, Christian; Hany, Roland (2012)
Challenges Found When Patterning Semiconducting Polymers with Electric Fields for Organic Solar Cell Applications

J. Nanomater., vol. 2012, article ID 478296

Linda Y. L. Wu; B. Leng; A. Bisht (2014)
Metal-polymer nano-composite films with ordered vertically aligned metal cylinders for sub-wavelength imaging

Appl. Phys. A: Mater. Sci. Process., vol. 116, issue 3, pp 893 - 900

Sergei Magonov; John Alexander (2011)
Single-pass Kelvin force microscopy and dC/dZ measurements in the intermittent contact: applications to polymer materials

Beilstein J. Nanotechnol., vol. 2, pp 15 - 27

Sangjan, Suntree; Traiphol, Nisanart; Traiphol, Rakchart (2012)
Influences of poly[(styrene)x-stat-(chloromethylstyrene)y]s additives on dewetting behaviors of polystyrene thin films: effects of polar group ratio and film thickness

Thin Solid Films, vol. 520, issue 15, pp 4921 - 4928

Doerk, Gregory S.; Liu, Chi-Chun; Cheng, Joy Y.; Rettner, Charles T.; Pitera, Jed W.; Krupp, Leslie E.; Topuria, Teya; Arellano, Noel; Sanders, Daniel P. (2013)
Pattern Placement Accuracy in Block Copolymer Directed Self-Assembly Based on Chemical Epitaxy

ACS Nano, vol. 7, issue 1, pp 276 - 285

Kaule, Tassilo; Zhang, Yi; Emmerling, Sebastian; Pihan, Sascha; Foerch, Renate; Gutmann, Jochen; Butt, Hans-Jürgen; Berger, Rüdiger; Duerig, Urs; Knoll, Armin W. (2013)
Nanoscale Thermomechanics of Wear-Resilient Polymeric Bilayer Systems

ACS Nano, vol. 7, issue 1, pp 748 - 759

Cheng Huang; Markus Moosmann; Jiehong Jin; Tobias Heiler; Stefan Walheim; Thomas Schimmel (2012)
Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers

Beilstein J. Nanotechnol., vol. 3, pp 620 - 628

Singh, Manpreet; Song, Sheng; Hahm, Jong-in (2014)
Unique temporal and spatial biomolecular emission profile on individual zinc oxide nanorods

Nanoscale, vol. 6, issue 1, pp 308 - 315

A. Plaud; A. Sarrazin; J. Béal; J. Proust; P. Royer; J.-L. Bijeon; J. Plain; P.-M. Adam; T. Maurer (2013)
Copolymer template control of gold nanoparticle synthesis via thermal annealing

J. Nanopart. Res., vol. 15, issue 12, article ID 2109

Jong-Ho Choe; Muhan Choi; Won Jun Lee; Byungsoo Kang; Jinhyung Kim; Min-Kyo Seo; Bumki Min; Sang Ouk Kim; Choon-Gi Choi (2014)
Subwavelength imaging in the visible range using a metal coated carbon nanotube forest

Nanoscale, vol. 6, issue 11, pp 5967 - 5970


Patents

Kuraseko E.; Takada S.; Suzuki M.
TRANSFER FILM

U.S. patent number US20130330518, filed 22 February 2012, published 12 December 2013, application number 14/000980

Assignee: Toray Industries, Inc. (Tokyo, JP)

International Patent Classification: B44C1/17

Claims:

We use cookies to improve your experience with our site. More information

Sign up for a free trial